Tail-Adaptive Location Rank Test for the Generalized Secant Hyperbolic Distribution

نویسندگان

  • O. Y. Kravchuk
  • J. Hu
چکیده

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-sample scale rank procedures optimal for the generalized secant hyperbolic distribution

There are many linear rank tests for the two-sample dispersion problem presented in literature. However just a few of them, the simplest ones, are commonly used. These common tests are not efficient for many practical distributions and thus other simple tests need to be developed to serve a wider range of distributions. The generalized secant hyperbolic distribution, proposed by Vaughan in [9],...

متن کامل

Hessian Stochastic Ordering in the Family of multivariate Generalized Hyperbolic Distributions and its Applications

In this paper, random vectors following the multivariate generalized hyperbolic (GH) distribution are compared using the hessian stochastic order. This family includes the classes of symmetric and asymmetric distributions by which different behaviors of kurtosis in skewed and heavy tail data can be captured. By considering some closed convex cones and their duals, we derive some necessary and s...

متن کامل

Skew Generalized Secant Hyperbolic Distributions: Unconditional and Conditional Fit to Asset Returns

A generalization of the hyperbolic secant distribution which allows for both skewness and leptokurtosis was given by Morris (1982). Recently, Vaughan (2002) proposed another flexible generalization of the hyperbolic secant distribution which has a lot of nice properties but is not able to allow for skewness. For this reason, Fischer and Vaughan (2002) additionally introduced a skewness paramete...

متن کامل

On random variate generation for the generalized hyperbolic secant distributions

Natural exponential families of distributions have probability mass functions of the form [exp(Ox)]#(dx) where # is a given measure, and 0 > 0 is a parameter. When we compute the mean and the variance, and force the variance to be a quadratic function of the mean as 0 is varied, the number of families becomes severely restricted. Morris (1982) showed that there are in fact only six natural expo...

متن کامل

Nonparametric Risk Management with Generalized Hyperbolic Distributions

In this paper we propose the GHADA risk management model that is based on the generalized hyperbolic (GH) distribution and on a nonparametric adaptive methodology. Compared to the normal distribution, the GH distribution possesses semi-heavy tails and represents the financial risk factors more appropriately. The nonparametric adaptive methodology has the desirable property of estimating homogen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Communications in Statistics - Simulation and Computation

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2008